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All models are wrong...




All models are wrong...

... but some are useful. (Box 1976)



Models of molecular evolution allow to:

 do hypothesis testing
e study molecular evolution patterns

* infer homologs conservation: what sites are preserved?
Which are under positive selection? Function?

* infer sites involved in evasion from immune response
and used in vaccine design

* infer mutation rates, biases and date speciation events
* study evolution of gene families using phylogenetics
 how does environment/ecology affect genomes?

e connection between genotype and phenotype?



Andrey Markov

1856 - 1922

Russian mathematician
Described the rules of a process:
inspired by Eugene Onegin of Pushkin



Evolutionary timeline

Markov model of substitution
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Memoriless property:
Pr ( cfuturel present &A past) = Pr ( cfuturel Tpresent)



Markov model of substitution: summary

The future depends only on the current state
States X(t): discrete or continuous

Time t: discrete (eg, # generations) or continuous
(exponential waiting times)

Simple/convenient mathematically

Typical assumptions:
Independence of evolution at sites
Stationarity
Homogeneity
Time reversibility



More formally...

A discrete Markov process X(t) in time t is a family of R.V. such that

for any (continuous or discrete) states x,, x; ,..., X;, X,,; and any discrete t :
PriX(t+1)=x,,, | X(t)=x,, X(t-1)=x,_4, ..., X(1)=x,, X(0)=x,}

= Pr{X(t+1)=x,,,| X(t)=x,}

A continuous Markov process has continuous index,
defined for a family of R.V. {X(t), 0< t <}

Generating matrix is needed!

For a homogeneous Markov process:

PriX(t+1)=x]| X(t)=y} = Pr{X(t)=x | X(t—1)=y} for any t

Example of a simple 2-state process:
http://en.wikipedia.org/wiki/Markov_chain
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Figure 2 | Evolution of thermophily over the tree of life. Protein-derived
nhPhyloBayes OGT estimates (and their 95% confidence intervals for key
ancestors) for prokaryotic organisms are colour-coded from blue to red for
low to high temperatures. Colours were interpolated between temperatures
estimated at nodes. The eukaryotic domain, in which OGT cannot be
estimated, has been shaded. The colour scale is in °C; the branch length scale
is in substitutions per site. A, archaeal; B, bacterial; E, eukaryotic domains.
Ac, Actinobacteria; Aq, Aquificae; Ba, Bacteroidetes; C, Cyanobacteria; Cf,
Chloroflexi; Ch, Chlamydiae; Cr, Crenarchaeota; DT, Deinococcus/
Thermus; Eu, Euryarchaeota; F, Firmicutes; P, Proteobacteria; P,
Planctomycetes; T, Thermotogae.



4-state Markov chain for DNA



Markov model of DNA substitution

Sites evolve independently (i.i.d.)

Continuous-time Markov process describes substitutions at any site

Character at time tis R.V. X(t) € {A,C,G,T}

Process generating matrix Q

g; are instantaneous rates fromitoj
Process leaves state j at rate: — g = E,;—:; q;

Pr{ X(t+At)=j | X(t)=i} ...= q; At

i#j

/QTT
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If g; constant over time the process is homogeneous

Q determines transition matrix P(t) = {p,(t)} = {Pr{ X(t)=j [ X(0)=i}}, t >0

= P()Q and P(0)=1 = | P(t) =exp(Qt)|

dP(1)
dt

drc
9ce
9ac

dec

A7
dca
qan

dca

QTG\

dce

9ac

Ileled,




The instantaneous rate matrix
of the Markov process

_E qrj drc dra drc
j=A
der _2 dcj Aca 4cc
j=C

Q= {qu} =
qar qac _E q 4 9dac
j=G

der d6c 96 _2 qcj

Total rate of change = Rate of staying in the same state

Arct A6 +tq1a=— (Grc+ Ara+ A1)



HKY model, Hasegawa-Kishino-Yano (1985)

QHKY =

Unequal | Transition (ts) vs.
frequencies

7 transversion (tv)
rate ratio:
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pyrlmldlne K = tsitv
T, T, ‘II'
G A purine

purine




Common models of nucleotide evolution
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Common models of nucleotide evolution

QHKYSS =

Hasegawa, Kishino, Yano (1984-85)

Similar to F81 (Felsenstein 1981)
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The probability of transition over time

dP(1)

dt
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The probability of transition over time

dP(1)

E2V_ P)0 et P(0)=I

dt

HKY model:
K=5
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The probability of transition over time

dP(t
4P _ b0 et P(O)=I - P(7) = exp(O1)
dt
t=0.00 my ( 1.000 0.000 0.000 0.000\
t=0.01=p \‘\P(o op) = | 0:000 {000 0.000 0.000
P9 =1 0.000 0.000 1.000 0.000
\ \ 0.000 0.000 0.000 1.000 )
t=1.00-{ (0991 0.002 0.006 0.001
[ 0.003 0993 0.001 0.003
HKY model: o1 POO=1 0013 0002 0985 0.001
K=5 g | \ 0.003 0.009 0.001 0987 )
= (7, , 7, Ty ) = = 0.580 0.141 0.232 0.047
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The probability of transition over time

dP(t
apr() = P(1)Q et P(0)=I = P(t)=exp(Qr)
dt
t=0.00 my (1.000 0.000 0.000 0.000
t=001=p \*P(o 00) = 0.000 1.000 0.000 0.000
771 0.000 0.000 1.000 0.000
| \ 0.000 0.000 0.000 1.000 |
t=1.00-4 0.991 0.002 0.006 0.001 \
_ | 0.003 0.993 0.001 0.003
HKY model: o1 POO=1 0013 0002 0985 0.001
K=5 GEJ \ 0.003 0.009 0.001 0987 )
= (T, Ty Ty ) = = \ 0.580 0.141 0.232 0.047
AT > \p(1.00) — (0.188 0.587 0.004 0.131\
04,0.3,0.2,0.1) ° (LO0) =1 0464 0.141 0348 0.047
2 \ 0.18% 0.304 0.094 0.324 )
S 0.400 0.300 0.200 0.100
Convergence i 0.400 0.300 0.200 0.100
to stationary frequencies /*P(IOO): 0.400 0.300 0.200 0.100
stationnaires: 4 4

t =100 0.400 0.300 0.200 0.100



Multiple substitutions

Markov process accounts for multiple hits and hidden changes.
By Chapman-Kolmogorov theorem:

pilti+t)) = Depiu (t1) pylt,) for k €T, C, A, G}

® -0




Stationarity

Y/ .\

initiai distribution of Miarkov chain X(1):

7(0) = (11(0), 7w (0), 7 4, (0), 7 5(0))

Attimer. m(r) = n(0) P(t)

OR 7t(1) = 7(0) pri(t)+ 7c(0) pei(t)+ A(0) pai( )+ 716(0) pei(?)

The process is stationary if V>0 w(¢) = m(0)
Stationary distribution: ®=nwP(t) = n0 =0
(7t is an eigenvector for eigenvalue 0)
OR 2,7 q;=0 (for V)
— 4= E#j”i q;

(Total flow out of j = Total flow into j)



Time reversibility

Markov process is time-reversible if and only if

V(i#)) T q;; = ;4

(In steady state: flowi—j = flowj—1i)

OR V(t.j.i#)  mpy) = 7p;(1)

If reversibility assumed:

q;=s;mT,  Wheres;=s;is exchangeability between i and

Q is described by 9 independent parameters (GTR or REV, Tavare 1986 ):

* am, bm, cn, * a b c\fn, 0 0 O
0- ar, * dm, em, la d e|l0 =, 0 O
brn, dm. ¢ fm,| |b d * f|O0 O =m O
cw, em. fm, ° c e f *NO O O um

Model with no reversibility constraint: UNREST (Yang 1994)



Across-sites rate variability
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Across-sites rate variability
Can be modeled using the I-distribution with oo = 3

a=0.5
[
\ E(rate)= o/ p=1

var(rate) = a/f*= 1/
Constant rate: o —

Estimation of o
requires an MSA

R

The gamma distribution has no biological justification, it was chosen for its convenience



Across-sites rate variability

The l-distribution is simplified by discretization,
for example with 4 classes of equal weight:

frequency

1/4

1/4

1/4

1/4

rate



Across-sites rate variability

[+ | model allows a proportion of invariable sites
| should be estimated from the data

| = proportion of invariant sites

(1-1)/4

(1-1)/4

frequency

(1-1)/4

\ (1-1)/4

-?0 *—@ @

rate



How many discrete categories?

Artiodactyl

Marsupial

Fig. 3. The maximum likelihood tree for the five orders of mammals
from the a and 3 globin genes (570 bp). The F84 + I' model was as-
sumed. Branch lengths are measured by the average numbers of nu-
cleotide substitutions per site.

as the FR4 + T and FR4 + dG4 maodels: the other two

-1760 1 ! ) o ——oe 0.4
A
1770 - - 0.3
o
-1780 - - 0.2
-1790 A - 0.1
1800 A — — —t 0
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k
Fig. 4. Likelihood values and estimates of the o parameter as func-

tions of &, the number of categories in the discrete gamma model. The
a and P globin genes for the five mammalian orders (570 bp) are an-
alyzed, assuming the best tree (Fig. 3) and the F84 + dG model. The
average nucleotide frequencies are ., = 0.2200, w. = 0.2449, x, =
0.2761, and g = 0.2590, with €, = —1,579.76. When k = c, that
is, with the F84 + I’ model, £ = —1,761.17 and & = 0.360.

From Yang 1994



Table 1. Maximum likelihood estimates of the a parameter?

Sequences Species a Refs
Nuclear genes
- and -globin genes, positions 1 and 2 5 mammals 0.36 10,23
Albumin genes, all positions 5 vertebrates 1.05 44
Insulin genes, all positions b vertebrates 0.40 44
c-myc genes, all positions b vertebrates 0.47 44
Prolactin genes, all positions S vertebrates 1.37 44
16S-like rRNAs, stem region 5 species 0.29 45
16S-like rRNASs, loop region 5 species 0.58 45
yn-globin pseudogenes 6 primates 0.66 23
Viral genes
Hepatitis B virus genomes 13 variants 0.26 46
Mitochondrial genes
12S rRNAs 9 rodents 0.16 22
895-bp mtDNAs 9 primates 0.43 10
Positions 1 and 2 of 1.3 genes® 11 vertebrates 0.13-0.95 28
Position 1 of four genes 6 primates 0.18 19
Position 2 of four genes 6 primates 0.08 19
Position 3 of four genes 6 primates 1.58 19
D-loop region of mtDNAs¢ 25 humans 0.17 12
Protein sequences
Mitochondrial cytochrome b 16 deuterostomes 0.44 12




Empirical models for proteins
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Empirical models for proteins
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Which model?



Which model?

The best!



Which model?

The best!

Need a criterion to decide “the best”?



Sir R. A. Flsher
AT R Ty

Likelihood

The likelihood of model M, parameters 6,
Given data D is:

L(M; 81D)=Pr(DI M; 8)

Maximum likelihood (ML) inference finds 8, the
best-supported value of parameters 0:
such that L(I\/I;é | D) > L(M; 8 | D) for all other 6
M with parameters 0 describes your hypothesis.

The ML method was pioneered by Sir R.A. Fisher in 1921-22
Lindgren (1968), Edwards (1984)



Likelihood




Hypothesis tests

A hypothesis is a statement about the state of nature.
It may need substantiation, verification or rejection.

A test of a hypothesis assigns one of the inferences:
* ‘accept’ the hypothesis or

* ‘reject’ the hypothesis for some result of an
experiment



Example: Fair coin

Toss coin 100 times, observe 65 heads and 35 tails.
Null hypothesis H,: “The coin is fair”
(i.e. probability 0.5 for Heads)

Calculate the likelihood:

100
L(Ho|D) = (65> x 0.5% x 0.5” = 0.000864

log(L(Ho|D)) = l0g(0.000864) = —7.0541



Example: Biased coin

Alternative hypothesis H;:

“The coin is biased with probability p of heads”
The ML estimate of p is 65/100 = 0.65
Optimized the likelihood:

100
L(10) = gy ) % P % (1= p)*

05
l0g(L(H,|D)) = l0g(0.08340) = —2.484

100
_ ( ) x 0.65% x 0.35> = 0.08340

H, is more likely, but is the result significant?



Hypothesis testing

Test the null hypothesis H, against the alternative H,
 Atest statistic T is used as a reduction of the data
* The range of values for rejecting H, being
* tested is called the critical region
* There are good and bad tests, leading to the wrong
inference or statistical errors:
Type | error: Rejecting H, when H, is true.
Type Il error: Accepting Hy when H, is false



Type | and Il errors

- a = “size of type | error” = Py, (reject Ho)
- B ="size of type Il error” = Py, (accept Ho)

\ Under H.
Under H;

Critical
value

%




Nested hypotheses

Two models are nested if one model can be reduced

to another model by constraining some of its
parameters.

In our example: forcing p = 0.5 in H, reduces it to H,
H, has one more parameter than H,

P(H1,p) = ('65) x p% x (1—p)®
Fix p to 0.5

P(H1,p = 0.5) = () x 0.5% x 0.5%° = P(Ho)



Likelihood ratio test (LRT)

Test H, against H,, given they are nested

Use likelihood ratio statistic:

lo = log{L(Ho)}
ly = log{L(H1)}
T=26=2 log (%) — 2001 — o)

When H,is correct, the LRT statistic is asymptotically
distributed as ¥? distribution with k degrees of
freedom (equal to the difference in the number of
parameters in Hyand H,)



Significance level and p-value

Choose the rejection region given null is true:
P(T2tlHy)=a
T is the calculated test statistic from data
t is the chosen cut-off for the critical region
a is the desired significance level
Choose a small value of a (e.g. 0.05 or 0.01)

For example, for x? with d.f. = 1:
P(T23.841)=0.05and P(T26.634)=0.01

p-value is probability of a result at least as extreme
as that observed if H, were true



X2 distributions

a=0.05
t=3.841 :
Xi
a=0.05
t=5.991
X;
a=0.05
t=7.815 X5
a=0.05
t=9.488
X

[

208



Exampl LRT: Fair vs biased coin

20 =2(€,-€,) = 2(-2.484 - -7.0541) = 9.1401

1 more parameter (p) in H,, so use x? with 1 d.f.
p-value = 0.0025 < 0.05

Reject the null H, in favour of the alternative H,

T =26 =91401
p-value = 0.0025

| | | | |
4 6
x> with 1 df.



Nested models

Model Base frequencies Substitution rates par;rn:iteeters

JC My =T, =M, =T a=b=c=d=e=f 0

K80 My =T, = My = Mg a=b=c=d=ze=f 1 T > C
F81 My # T, # Ty # Mg a=b=c=d=e=f 3 bJ a \d ¢
HKY My # T, # TTy # T a=b=c=d=ze=f 4 i p— >é
GTR Mr # T # Ty # Tlg azbzczd=ze=f 8

Adapted from Posada & Crandall (2001).



LRT: JC vs K80

H,: JC model
H,: KBO model (with k or ts/tv rate ratio)

* Both hypotheses use the same tree topology and have
e same number of branch length parameters.

 JCis nested within the K80 model.

* Fixing k=1 in K80 gives the JC model.

 The difference in number of parameters is 1 (k).

* Perform the LRT by comparing 26 with x*> d.f. =1



LRT: GTR vs GTR+I

H,: GTR model
H,: GTR+I (GTR parameters + a parameter)
GTR is nested within GTR+[l, as o — recovers GTR

But, this value is on the boundary of the parameter

space, So:
e Test 26 with 50:50 mixture of point mass 0 and
x> with d.f.=1

e Critical values are 2.71 at 5% and 5.41 at 1%
 See Goldman & Whelan (2000) for further
details and table of critical values.



LRT: constant rate over time?

100
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(@) A8O )
5§
2 £ 60 - carp
8 2,. platypus = chicken
- [ |
»n O
S 20 -
-
O - T T T ] 1
o (@) o (@) (@]
< = & B S 3




LRT: constant rate over time?

H,: no clock
Parameters:
2T—3 =7 for T taxa

T—2=3
constraints

H,: clock
Parameters:

T-1=4




Akaike Information Criterion

AIC =2k — 2 log(L)

k is number of free model parameters
L is the maximum likelihood

* More parameters lead to a larger penalty

e We choose the model with the lowest AIC value
 (Can be used with non-nested models

e (Can rank models



AlCc and BIC

For small sample size n compared to the number of
parameters k (e.g. n / k < 40) use corrected AIC:

2R(R + 2)
n—Rr—"1

AIC. = 2k — 2 log(L) A

Bayesian information criterion is related to AlC.
BIC has a larger penalty for parameters than AIC,
so is more conservative and prefers simpler models.

BIC = Rlog(n) — 2 log(L)



