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All	models	are	wrong…	



All	models	are	wrong…	

…	but	some	are	useful.	(Box	1976)	
	



Models	of	molecular	evolu0on	allow	to:	
	

•  do	hypothesis	tes3ng	
•  study	molecular	evolu3on	paFerns	

•  infer	homologs	conserva3on:	what	sites	are	preserved?	
Which	are	under	posi3ve	selec3on?	Func3on?	

•  infer	sites	involved	in	evasion	from	immune	response	
and	used	in	vaccine	design	

•  infer	muta3on	rates,	biases	and	date	specia3on	events	
•  study	evolu3on	of	gene	families	using	phylogene3cs		

•  how	does	environment/ecology	affect	genomes?	
•  connec3on	between	genotype	and	phenotype?	



Andrey	Markov	

1856	-	1922	
	

Russian	mathema3cian	
	Described	the	rules	of	a	process:		

inspired	by	Eugene	Onegin	of	Pushkin	



Markov	model	of	subs0tu0on	
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Memoriless	property:	
	

Pr	(	Cfuture|	Tpresent	&	A	past)	=	Pr	(	Cfuture|	Tpresent)				
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t0 

present	

future	
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The	future	depends	only	on	the	current	state	
States	X(t):	discrete	or	con3nuous		
Time	t:	discrete	(eg,	#	genera3ons)	or	con3nuous	
(exponen3al	wai3ng	3mes)	
	
Simple/convenient	mathema3cally	
	
Typical	assump3ons:	
	 	Independence	of	evolu3on	at	sites	

		Sta3onarity	
	Homogeneity	

	 	Time	reversibility	

Markov	model	of	subs0tu0on:	summary	



More	formally…	
A	discrete	Markov	process	X(t)	in	3me	t	is	a	family	of	R.V.	such	that		
	
for	any	(con3nuous	or	discrete)	states	x0,	x1	,…,	xt	,	xt+1	and	any	discrete	t	:	
	
Pr{X(t+1)=xt+1|	X(t)=xt	,		X(t–1)=xt–1,	…,		X(1)=x1,		X(0)=x0}	
	
=	Pr{X(t+1)=xt+1|	X(t)=xt	}	

	 		
A	con0nuous	Markov	process	has	con3nuous	index,		
defined	for	a	family	of	R.V.	{X(t),	0≤	t	<∞}		

Genera0ng	matrix	is	needed!	
	
For	a	homogeneous	Markov	process:	
	
Pr{X(t+1)=x|	X(t)=y}	=	Pr{X(t)=x	|X(t–1)=y}	for	any	t	
	
	

Example	of	a	simple	2-state	process:	
hFp://en.wikipedia.org/wiki/Markov_chain	



Nonthermophilic		
LUCA?	

From	Boussau	et	al.	2008,	Nature	



4-state	Markov	chain	for	DNA	



Markov	model	of	DNA	subs0tu0on	
Sites	evolve	independently	(i.i.d.)	

Con3nuous-3me	Markov	process	describes	subs3tu3ons	at	any	site	

Character	at	3me	t	is	R.V.		X(t)	∈	{A,C,G,T}		

Process	genera3ng	matrix	Q	
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Q =
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qCT qCC qCA qCG
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' qij	are	instantaneous	rates	from	i	to	j			

Process	leaves	state	i	at	rate:	–	qii	=	∑j≠i	qij	
Pr{	X(t+Δt)=j	|	X(t)=i}	i≠j	=	qij	Δt	
If	qij	constant	over	3me	the	process	is	homogeneous	

Q	determines	transi3on	matrix		P(t)	=	{pij(t)}	=	{Pr{	X(t)=j	|	X(0)=i	}},	t	>0	
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dP(t)
dt

= P(t)Q and P(0) = I   ⇒   P(t) = exp(Qt)



The	instantaneous	rate	matrix		
of	the	Markov	process	

Q = {qij} =

− qTj
j≠A
∑ qTC qTA qTG

qCT − qCj
j≠C
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Total	rate	of	change	=	Rate	of	staying	in	the	same	state	
	qTC	+	qTG	+qTA	=	−	(qTC	+	qTA	+	qTG)	
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−	(qTC	+	qTA	+	qTG)	
	



HKY	model,	Hasegawa-Kishino-Yano	(1985)	
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πA

Unequal	
frequencies	
	
πT,	πC, πA, πG

Transi3on	(ts)	vs.	
transversion	(tv)		

rate	ra3o:	
	

κ = ts/tv
	

purine	
purine	

pyrimidine	

pyrimidine	



Common	models	of	nucleo0de	evolu0on	

										Jukes	and	Cantor	(1969) 	 	 	Kimura	(1980)	
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                     QK80 =

• α β β
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Common	models	of	nucleo0de	evolu0on	

Hasegawa,	Kishino,	Yano	(1984-85)									Tamura	and	Nei	(1993)	

Similar	to	F81	(Felsenstein	1981)	€ 

QHKY85 =

• απC βπ A βπG

απT • βπ A βπG

βπT βπC • απG
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                QTN93 =

• α1πC βπ A βπG

α1πT • βπ A βπG
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	The	probability	of	transi0on	over	0me	

dP(t)
dt

= P(t)Q et P(0)=I            ⇒             P(t) = exp(Qt)



t	=	0.00	
t	=	0.01	

dP(t)
dt

= P(t)Q et P(0)=I            ⇒             P(t) = exp(Qt)

HKY	model:			
κ = 5

π = (πA , πC, πG,  πT ) =
(0.4, 0.3, 0.2, 0.1) 

	The	probability	of	transi0on	over	0me	

Ev
ol
u3

on
ar
y	
3m

e,
	t	



t	=	0.00	
t	=	0.01	

t	=	1.00	

dP(t)
dt

= P(t)Q et P(0)=I            ⇒             P(t) = exp(Qt)

	The	probability	of	transi0on	over	0me	

HKY	model:			
κ = 5

π = (πA , πC, πG,  πT ) =
(0.4, 0.3, 0.2, 0.1) 
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t	=	100	

dP(t)
dt

= P(t)Q et P(0)=I            ⇒             P(t) = exp(Qt)

Convergence		
to	sta3onary	frequencies	
sta3onnaires:	

HKY	model:			
κ = 5

π = (πA , πC, πG,  πT ) =
(0.4, 0.3, 0.2, 0.1) 

t	=	0.00	
t	=	0.01	

t	=	1.00	

	The	probability	of	transi0on	over	0me	



Mul0ple	subs0tu0ons	

Markov	process	accounts	for	mul3ple	hits	and	hidden	changes.	
By	Chapman-Kolmogorov	theorem: 		
	

	pij(t1+t2)	=	∑k	pik	(t1)	pkj(t2)		for	k	∈	{T,	C,	A,	G}	

i jk
t1 t2



Ini3al	distribu3on	of	Markov	chain	X(t): 

π(0) = (πT(0), π C(0), π A(0), π G(0))

At	3me	t:   π(t) = π(0) P(t)  

OR             πi(t) = πT(0) pTi(t)+ πC(0) pCi(t)+ πA(0) pAi(t)+ πG(0) pGi(t)

The	process	is	sta3onary	if		∀t >0  π(t) = π(0) 

Sta3onary	distribu3on:	π = πP(t)  ⇒ πQ = 0

(π is	an	eigenvector	for	eigenvalue	0)

OR ∑i πi qij = 0 (for ∀ j)

– πj qjj = ∑i≠j πi qij  

(Total	flow	out	of  j  = Total	flow	into j)

 

Sta0onarity	



Time	reversibility	
Markov	process	is	?me-reversible	if	and	only	if	

∀(i≠j)  πi qij  = πj qji 

(In	steady	state:	 	flow	i → j   =   flow j → i )

OR  ∀(t, j, i≠j)  πi pij(t)  = πj pji(t)

If	reversibility	assumed:	

qij = sijπj, where sij = sji is	exchangeability	between i and j

Q is	described	by 9 independent	parameters	(GTR	or	REV,	Tavare	1986	):

Model	with	no	reversibility	constraint:	UNREST	(Yang	1994)	
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Across-sites	rate	variability	

Small	subunit		
ribosomal	RNA	
(18S	or	16S)	
	



Across-sites	rate	variability	
Can	be	modeled	using	the	Γ-distribu3on	with	α	=	β		

E(rate)=	α/β=1	
var(rate)	=	α/β	2=	1/α	

Constant	rate:	α	→∞		

Es3ma3on	of	α	
requires	an	MSA	

		
	
	

The	gamma	distribu3on	has	no	biological	jus3fica3on,	it	was	chosen	for	its	convenience.	



Across-sites	rate	variability	

The	Γ-distribu3on	is	simplified	by	discre3za3on,	
for	example	with	4	classes	of	equal	weight:	
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Across-sites	rate	variability	

Γ	+	I	model	allows	a	propor3on	of	invariable	sites	
I	should	be	es3mated	from	the	data	

(1-I)/4	
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(1-I)/4	

(1-I)/4	

(1-I)/4	
rI	=	0	

I	=	propor3on	of	invariant	sites	



How	many	discrete	categories?	

From	Yang	1994	





Empirical	models	for	proteins	



Empirical	models	for	proteins	

JTT	
	
WAG	
	
LG	
	
	
HIV	
	
Order/IDP	
	
α/β	

Q-matrix	
	
	
	
	
	
	
	
AA	sta3onary	
frequencies:	πi	
	

+	F	op3on:	es3mate	frequencies	from	data	
	



Which	model?		



Which	model?		

The	best!	



Which	model?		

The	best!	

Need	a	criterion		to	decide	“the	best”?	
	



The	likelihood	of	model	M,	parameters	θ,	
Given	data	D	is:	

		
	L(M;	θ	I	D)	=	Pr(D	I		M;	θ)	

	
Maximum	likelihood	(ML)		inference	finds				,	the	
best-supported	value	of	parameters	θ:	

	such	that	L(M;				I	D)	≥	L(M;				I	D)	for	all	other	θ	
	M	with	parameters	θ	describes	your	hypothesis.	

	
The	ML	method	was	pioneered	by	Sir	R.A.	Fisher	in	1921-22			
Lindgren	(1968),	Edwards	(1984)	

Likelihood	
Sir	R.	A.	FIsher	

θ̂

θ̂ θ̂



Likelihood	



A	hypothesis	is	a	statement	about	the	state	of	nature.	
It	may	need	substan3a3on,	verifica3on	or	rejec3on.	
	
A	test	of	a	hypothesis	assigns	one	of	the	inferences:	
•  ‘accept’	the	hypothesis	or	
•  ‘reject’	the	hypothesis	for	some	result	of	an	

experiment	

Hypothesis	tests	



Toss	coin	100	3mes,	observe	65	heads	and	35	tails.	
Null	hypothesis	H0:	“The	coin	is	fair”	

	(i.e.	probability	0.5	for	Heads)	
	
Calculate	the	likelihood:	
	

Example:	Fair	coin	



Alterna3ve	hypothesis	H1:		
“The	coin	is	biased	with	probability	p	of	heads”	
The	ML	es3mate	of	p	is	65/100	=	0.65	
Op3mized	the	likelihood:	
	

Example:	Biased	coin	

H1	is	more	likely,	but	is	the	result	significant?	



Test	the	null	hypothesis	H0	against	the	alterna3ve	H1	
•  A	test	sta?s?c	T	is	used	as	a	reduc3on	of	the	data	
•  The	range	of	values	for	rejec3ng	H0	being	
•  tested	is	called	the	cri?cal	region	
•  There	are	good	and	bad	tests,	leading	to	the	wrong	

inference	or	sta3s3cal	errors:	
					Type	I	error:	Rejec3ng	H0	when	H0	is	true.	
					Type	II	error:	Accep3ng	H0	when	H0	is	false	

Hypothesis	tes0ng	



Type	I	and	II	errors	



Nested	hypotheses	

Two	models	are	nested	if	one	model	can	be	reduced	
to	another	model	by	constraining	some	of	its	
parameters.	
In	our	example:	forcing	p	=	0.5	in	H1	reduces	it	to	H0	
H1	has	one	more	parameter	than	H0	



Likelihood	ra0o	test	(LRT)	

Test	H0	against	H1,	given	they	are	nested	
	
Use	likelihood	ra3o	sta3s3c:	
	
	
	
	
	
	
	
When	H0	is	correct,	the	LRT	sta3s3c	is	asympto3cally	
distributed	as	χ2	distribu3on	with	k	degrees	of	
freedom	(equal	to	the	difference	in	the	number	of	
parameters	in	H0	and	H1)	



Significance	level	and	p-value	
Choose	the	rejec3on	region	given	null	is	true:	
P(T	≥	t	I	H0)	=	α	

	T	is	the	calculated	test	sta3s3c	from	data	
	t	is	the	chosen	cut-off	for	the	cri3cal	region	
	α	is	the	desired	significance	level	

Choose	a	small	value	of	α	(e.g.	0.05	or	0.01)	
	
For	example,	for	χ2	with	d.f.	=	1:	
P(T	≥	3.841)	=	0.05	and		P(T	≥	6.634)	=	0.01	

	p-value	is	probability	of	a	result	at	least	as	extreme	
as	that	observed	if	H0	were	true	



Χ2	distribu0ons	



Exampl	LRT:	Fair	vs	biased	coin	
2δ	=	2(ℓ1	-	ℓ0)	=	2(-2.484	-	-7.0541)	=	9.1401	
1	more	parameter	(p)	in	H1,	so	use	χ2	with	1	d.f.	
p-value	=	0.0025	<	0.05	
Reject	the	null	H0	in	favour	of	the	alterna3ve	H1	



Nested	models	



LRT:	JC	vs	K80	

H0:	JC	model	
H1:	K80	model	(with	κ	or	ts/tv	rate	ra3o)	
	
•  Both	hypotheses	use	the	same	tree	topology	and	have	
•  same	number	of	branch	length	parameters.	
•  JC	is	nested	within	the	K80	model.	
•  Fixing	κ	=	1	in	K80	gives	the	JC	model.	
•  The	difference	in	number	of	parameters	is	1	(κ).	
•  Perform	the	LRT	by	comparing	2δ	with	χ2	d.f.	=	1	



H0:	GTR	model	
H1:	GTR+Γ	(GTR	parameters	+	α	parameter)	
GTR	is	nested	within	GTR+Γ,	as	α	→∞	recovers	GTR	
	
But,	this	value	is	on	the	boundary	of	the	parameter	
space,	so:	
•  Test	2δ	with	50:50	mixture	of	point	mass	0	and	

χ2	with	d.f.	=	1	
•  Cri3cal	values	are	2.71	at	5%	and	5.41	at	1%	
•  See	Goldman	&	Whelan	(2000)	for	further	

details	and	table	of	cri3cal	values.	

LRT:	GTR	vs	GTR+Γ	



LRT:	constant	rate	over	0me?	



LRT:	constant	rate	over	0me?	
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H0:	clock	
Parameters:	
T	–	1	=	4	



	
	
k	is	number	of	free	model	parameters		
L	is	the	maximum	likelihood	
	
•  More	parameters	lead	to	a	larger	penalty	
•  We	choose	the	model	with	the	lowest	AIC	value	
•  Can	be	used	with	non-nested	models	
•  Can	rank	models	

Akaike	Informa0on	Criterion	



AICc	and	BIC	
For	small	sample	size	n	compared	to	the	number	of	
parameters	k	(e.g.	n	/	k	<	40)	use	corrected	AIC:	
	
	
	
	
	
Bayesian	informa3on	criterion	is	related	to	AIC.	
BIC	has	a	larger	penalty	for	parameters	than	AIC,		
so	is	more	conserva3ve	and	prefers	simpler	models.	


